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Abstract

This paper presents a computational study of the forced convection heat/mass transfer from two spheres placed in a uniform viscous flow parallel
to their line of centers. The temperature/concentration inside the spheres are assumed spatially uniform but not constant in time. Axisymmetric,
slow, viscous flow (Stokes flow) around the spheres was considered. The appropriate energy/chemical species balance equations were solved
numerically in bispherical coordinates. The finite difference method was used to discretize the mathematical model equations. Various spheres
spacing, sizes and physical properties were considered at moderate Pe numbers.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The importance of the heat/mass transfer from or to a body
of spherical shape is reflected by the vast number of works pub-
lished over the years. Clift et al. [1], Brauer [2], Brounshtein
and Shegolev [3], Sadhal et al. [4], Chhabra [5] and Michaelides
[6] reviewed the studies published in this field.

In some situations, the single sphere data cannot predict ac-
curately the system behaviour. The interaction between spheres
which are moving in close proximity becomes a first inter-
est problem. The heat/mass transfer from two spheres placed
in a uniform viscous flow parallel to their line of centers (in
tandem) may be considered a first step in the analysis of this
interaction.

The heat/mass transfer around two spheres in tandem was
analyzed theoretically in:

• [7–11], the stagnant phases case;
• [12], forced convection, creeping flow;
• [13], forced convection, moderate sphere Re number;
• [14], combined convection, moderate sphere Re number.
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Aminzadeh et al. [12] solved the case of two equal size
spheres with rigid surface in creeping flow. The Peclet num-
ber takes values in the range 0–50. It was found that the overall
Sherwood number for either sphere was always less than that of
a single isolated sphere. The Navier–Stokes and energy equa-
tions have been solved numerically in bispherical coordinates
for a pair of equal spheres in tandem at Re = 40 and Pr = 1 by
Tal et al. [13]. Two different spacings were used. As in [12], it is
shown that the drag coefficient and the average Nusselt number
of either sphere are less than that of a single sphere, the effect
being much stronger for the downstream sphere. Chen et al.
[14] studied the flow and heat transfer characteristics of lam-
inar combined convection from two isothermal spheres of the
same diameter in tandem arrangement. The distance between
the spheres centers was constant, being twice the value of the
diameter. The values considered for the sphere Reynolds num-
ber are in the range 10–100, the fluid phase Pr number was
assumed equal to 0.7 and the ratio Gr (Grashof number for heat
transfer)/Re2 varies between 0 and 10. The results presented in
[14] are similar to those obtained in [12,13].

The interaction between two spheres was also investigated in
thermocapillarity. In almost all articles dedicated to this prob-
lem, the effects of the convective transport were neglected and
the heat transfer was modeled by the Laplace equation. The ef-
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Nomenclature

c characteristic length, bispherical coordinate system
c̄ dimensionless characteristic length, bispherical

coordinate system
Cp heat capacity
d sphere diameter
k thermal conductivity
L distance from the center of the sphere to the origin

of the coordinate system
Nu instantaneous Nusselt number
Pe fluid phase Peclet number, Pe = U∞d1ρf Cp,f /kf

r radial coordinate in cylindrical coordinate system
t time
T temperature
U∞ free-stream fluid velocity
V volume
z axial coordinate in cylindrical coordinate system
Z dimensionless temperature defined by the relation,

Z(s) = T(s)−T∞
Ts,0−T∞

Greek letters

η coordinate in bispherical coordinate system
ξ coordinate in bispherical coordinate system
Ξ volume heat capacity ratio, (ρsCp,s)/(ρf Cp,f )

ρ density
τ dimensionless time or Fourier number,

τ = 4tkf /(ρf Cp,f d2
1 )

ψ stream function
ψ̄ dimensionless stream function

Subscripts

f refers to the fluid phase
s refers to the spheres
0 initial conditions
1 refers to the upstream sphere
2 refers to the downstream sphere
fects of convective transport were studied only in [15–18]. Dif-
ferent types of approximations (boundary layer, for example)
were used in [15–18] to solve the heat/mass balance equations.

The momentum and forced convection heat transfer around
three spheres in-line have been investigated numerically in [19]
(unconfined spheres) and [20] (the spheres are placed at the
axis of a tube). The temperature of the spheres is considered
constant. It is shown that for fixed values of the Reynolds
and Prandtl numbers, the Nusselt number is maximum for the
first sphere and it is reduced progressively for the 2nd and 3rd
spheres.

In [7–14] the spheres are considered gradientless, i.e. the
concentration/temperature inside the spheres are assumed con-
stant and the shape and volume of the spheres unaffected by the
transfer. After Sadhal et al. [4], “physically speaking, a constant
condition at the interface implies an infinite heat or mass capac-
ity of the dispersed phase. While the results for transport based
on such a constant interface condition give an insight about the
resistance of the continuous phase, the validity is in general
quite limited. To understand the proper behaviour of a system,
full implementation of the interface conditions is needed”.

The general formulation of the heat/mass transfer from
a body of revolution is that of a conjugate problem. The as-
ymptotic solutions of the conjugate transfer are the internal
problem [1] and the external problem [1]. For the particular sit-
uation of heat/mass transfer around two spheres, the influence
of spheres interaction on heat/mass transfer rate is expected to
be maximum when the transfer is controlled by the fluid, i.e. in
the context of the external problem. The external problem as-
sumes that the sphere is gradientless (the sphere has uniform
properties). The condition of uniform sphere properties is ful-
filled if the relaxation time inside the sphere is considerably
smaller than the relaxation time in the fluid. The transfer is
hundreds of times (at least) faster inside the spheres than in
the fluid. In terms of physical quantities, this condition means
values considerably greater than one for the conductivity ratio
or the quantity (diffusivity ratio) × (Henry number). Note that
these ratios are defined as (sphere’s property)/(environmental
fluid property).

The aim of this work is to extend the analysis from [12–14]
to the spheres with spatially uniform, but changing with time,
concentration/temperature. The surfaces of the spheres were
considered rigid. Stokes flow around the spheres was assumed.
At moderate values of the Pe number, i.e. Pe = 100, the influ-
ence of the physical properties ratio on the heat/mass transfer
rate was analyzed for spheres of equal/different diameters and
identical/different physical properties. Different spheres spac-
ing was considered.

2. Basic equations

Consider the steady, axisymmetric, creeping flow of a New-
tonian incompressible fluid past two spheres of diameter d1
and d2, respectively, parallel to their line of centers as shown
in Fig. 1. We assume that the diameters of the spheres are con-
siderably higher than the molecular mean free path of the sur-
rounding fluid. Oscillations and rotation of the spheres do not
occur during the movement. The spheres have the same initial
concentration/temperature. Due to the complexity of the prob-
lem, the following supplementary assumptions are considered:

(i) during the heat/mass transfer, the volume and the shape
of the sphere remain constant;

(ii) the concentration/temperature inside the spheres is spa-
tially uniform but not constant in time;

(iii) the physical properties are constant;
(iv) during the heat/mass transfer, the distance between the

spheres remains constant;
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Fig. 1. Schematic of the problem.

(v) no phase change occurs during the heat/mass transfer;
(vi) no chemical reaction inside the spheres or in the sur-

rounding fluid;
(vii) the effects of free convection, viscous dissipation and ra-

diation are negligible;
(viii) in the case of mass transfer, the only diffusion mechanism

is the Fick diffusion mechanism;
(ix) at the interface, thermodynamic equilibrium is estab-

lished instantaneously.

The assumption (iv) needs supplementary discussions. Con-
sidering the spheres freely suspended in the surrounding flow-
ing fluid, the assumption (iv) is satisfied if the net force (the re-
sultant of the forces) acting on each sphere vanishes. The forces
usually taken into consideration are: the buoyancy force, Fb , the
gravity force, Fg , and the hydrodynamic interaction force, Fh.
For spheres with identical physical properties and equal diam-
eters in Stokes flow, the relation Fg − Fb − Fh = 0 can be
satisfied in normal conditions. The situation is more complex
for spheres with different physical properties and/or different
diameters. For some parameter values used in this work, the
assumption (iv) is fulfilled if the spheres are immobilized by
mechanical devices or if other forces act on the system.

The assumptions practiced in this work are those usually em-
ployed in the analysis of the analogy between heat and mass
transfer. For the simplicity and clarity of the presentation, in
the remainder of this work, we will use only the terminology
specific to heat transfer. This does not mean however that the
implication of the present results in mass transfer should be ig-
nored.

Under the previous assumptions, for spheres with spatially
uniform temperature, the heat balance equations for an axisym-
metrical flow field in general orthogonal curvilinear coordinates
α,β,φ (axisymmetric versus the coordinate φ) are:
• fluid phase:
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• sphere:

ρs,iCp,s,iVs,i

∂Ts

∂t
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where

vα = − 1

hβhφ

∂ψ

∂β
, vβ = 1

hαhφ

∂ψ

∂α

ψ is the stream-function and σi the spheres surfaces.

It is convenient to use the bispherical coordinate system
[21–23] to solve numerically this problem. Let a system of
axisymmetric cylindrical coordinates (r, z) be chosen so that
the centres of the spheres lie along the z-axis (see Fig. 1).
The axisymmetric bispherical coordinate system (ξ, η) and the
axisymmetric cylindrical coordinates (r, z) are related via the
transformation laws:

r = c sin ξ

coshη − cos ξ
; z = c sinhη

coshη − cos ξ

where c > 0 is a characteristic length. This transformation maps
the right half of the rz-plane (from which the surface occu-
pied by the spheres is excluded) into the rectangle η1 � η � η2,
0 � ξ � π(η1 < 0, η2 > 0). The surfaces of the spheres are lo-
cated at η = η1 and η = η2. The relations between η1, η2, the
diameters of the spheres, d1, d2, and the distances, L1,L2, of
their centers from the origin of the coordinates system are:

di

2
= c

sinh |ηi | ; Li = c coth |ηi |, i = 1,2 (2)

The scale factors (metric coefficients) hα,hβ,hφ , for the bi-
spherical coordinate system are:

hα = hη = c

coshη − cos ξ

hβ = hξ = c

coshη − cos ξ

hφ = c sin ξ

coshη − cos ξ

We define the following dimensionless variables and groups
(the radius of the upstream sphere is considered as the length
scale and the free stream velocity U∞ as the velocity scale)

c̄ = 2c

d1
, Z(s) = T(s) − T∞

Ts,0 − T∞

τ = 4tkf

ρf Cp,f d2
1

, ψ̄ = 4ψ

U∞d2
1

Pe = ρf Cp,f U∞d1

k
, Ξ = ρsCp,s

ρ C
f f p,f
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After η and ξ are substituted for α and β in (1), the non-
dimensional conservation balances equations for the thermal
energy in axisymmetric bispherical coordinates are:
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where

A = coshη − cos ξ

c̄

The appropriate boundary conditions are:

• spheres surfaces (η = ηi , i = 1,2)

Z = Zs,i, i = 1,2 (4a)

• free stream (η = ξ = 0)

Z = 0 (4b)

• symmetry axis (ξ = 0 and η �= 0, ξ = π )

∂Z

∂ξ
= 0 (4c)

The dimensionless initial conditions are:

τ = 0, Zsi = 1, Z(η �= ηi) = 0, i = 1,2 (5)

The quantities of interest used to characterize the heat transfer
are:

• spheres dimensionless temperature, Zs,1 and Zs,2;
• instantaneous local Nusselt number, Nui (ξ), i = 1,2;
• overall (surface average) instantaneous Nusselt number,

Nui , i = 1,2.

Considering as driving force the instantaneous temperature dif-
ference (Ts,i − T∞) and the diameters of the spheres as char-
acteristic length, Nui (ξ) and Nui were calculated in bispherical
coordinates by the relations:
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The present relations used to calculate the Nu numbers do not
follow the classical relations presented in [2] (the initial temper-
ature difference is used as driving force in [2]). The Nu number
based on the initial temperature difference represents the in-
stantaneous average dimensionless heat flux on the surface of
the spheres. In all situations, this Nu number decreases monoto-
nously in time and tends asymptotically to zero (the asymptotic
value corresponds to the end of the process). In heat/mass trans-
fer computations its time average value is usually related to the
difference between the temperature of the spheres and the envi-
ronmental fluid.

The present Nu number is not a direct measure of the in-
tensity of the process, but it has a nonzero asymptotic limit.
This asymptotic value is reached when the dimensionless tem-
perature of the spheres and the dimensionless temperature gra-
dient on the surface of the spheres obey the same exponential
decrease in time. However, the technical relevance of this as-
ymptotic value depends on the temperature value at which it
is attained. In heat/mass transfer computations its time average
value is usually used in connection with the logarithmic mean
difference between the temperature of the spheres and the envi-
ronmental fluid.

3. Method of solution

The values of the dimensionless stream-function were cal-
culated numerically. The numerical solving of the fourth-order
stream-function equation in bispherical coordinates is presented
in [24].

The energy balance equations were solved numerically. The
mathematical model equations (3) is a system formed by a 2D
linear parabolic partial differential equation (PDE) that de-
scribes the heat transfer in the fluid phase and two linear or-
dinary differential equation (ODE) that describes the energy
balance of the spheres. The 2D domain [η1, η2] × [0,π] was
transformed into the unit square. Eq. (3a) was discretized with
the exponentially fitted scheme [25], on uniform grids with
N ×N points, N = 65,129,257 and 513. The mesh step size h

is equal to h = 1/(N − 1). Let us consider that the numerical
values of the dimensionless temperature at time τ are known.
The values at the time τ + �τ were calculated as follows:

• the values on the spheres surfaces were calculated by in-
tegrating (3b) from τ to τ + �τ with an explicit modified
Euler algorithm; the integral from relations (3b) was cal-
culated by the Simpson 3/8 rule using the local heat flux
values available at time τ ;

• the values of the dimensionless temperature in the fluid
phase were calculated by the implicit ADI method using
the spheres surfaces values computed in the previous step
as boundary conditions (relations (4a)).

The time step was variable and changed from the start of the
computation to the final stage. The initial and final values of the
time step depend on the parameter values.

For the spheres with constant temperature, we can analyze
the accuracy and the grid dependence of the numerical solutions
using the steady values of the average Nu numbers. A sample
from our numerical experiments is presented in Table 1. Table 1
shows that starting from the grid with N = 129, the relative er-
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Table 1
Mesh behaviour of the solution for equal size spheres with constant temperature

Nu 2L/d Mesh

65 × 65 129 × 129 257 × 257 513 × 513

Nu1 1.25 4.9519 4.9797 4.9895 4.9927
Nu2 3.3757 3.4328 3.4491 3.4537

Nu1 2 5.1747 5.1815 5.1847 5.1863
Nu2 3.7919 3.8299 3.8406 3.8436

Nu1 3 5.2688 5.2917 5.2948 5.2954
Nu2 4.0837 4.1257 4.1380 4.1417

rors in the average Nu numbers are smaller than 1% and the
numerical solution computed on the mesh with N = 513 can
be considered grid independent. For the spheres with spatially
uniform temperature the time evolution of Nui and Zs,i were
analyzed for different N and integration time steps values. Also,
the discrete Euclidean norm of the residuals was monitored.
The values selected for N and the time integration steps corre-
spond to a grid and time step independent solution (the relative
errors in Nui and Zs,i are smaller than 1%).

4. Results

Three problems are analyzed in this section. First, the in-
fluence of the spheres spacing on the heat transfer rate is an-
alyzed for two spheres with identical physical properties, i.e.
Ξ1 = Ξ2 = Ξ , and equal diameters. The second refers to the
spheres with different physical properties and the same diame-
ter. The heat transfer interaction from spheres with different di-
ameters is the third problem studied. Each problem is presented
in a distinct sub-section. In all computations, the volume heat
capacity ratio, Ξ , takes values from 0.01 to 100 and the Peclet
number based on the upstream sphere diameter, Pe, is consid-
ered equal to 100. For metallic spheres, porous or smooth, Ξ

takes values considerably greater than one, if the environmental
medium is a gas, and in the range (0.1,10), if the environmental
medium is liquid. For a mass transfer process, Ξ is the Henry
number. Taking into consideration the fact that in the presence
of the contaminants, a fluid sphere behaves as a rigid sphere,
Ξ can take values considerably smaller than one. The results
presented were obtained on a 513 × 513 mesh points.

4.1. Spheres of equal sizes and identical physical properties

If d1 = d2 = d , it results from relations (2) that −η1 =
η2 and L1 = L2 = L. The values selected for L are: L =
1.25d,2d,3d . These values correspond to a gap between
spheres equal to 0.25d , d and 2d , respectively.

In the case of Stokes flow around two equal-sized spheres
in tandem, the spheres have identical values of the drag co-
efficient [22,26], surface pressure, vorticity, and so on. The
stream-function is symmetric about the r-axis. The hydrody-
namic environment around each sphere is the same. Under these
conditions, for this case, the results obtained for the heat trans-
fer may be viewed as the image of a pure thermal interaction.
Table 2
Average Nu numbers for spheres in tandem with constant temperature

d1/d2 2L1/d1 Nu1 Nu2 Nuiso Nu1/Nuiso Nu2/Nuiso

1 1.25 4.99 3.454 5.611 0.889 0.616
1 2 5.186 3.844 0.924 0.685
1 3 5.295 4.142 0.944 0.738
0.5 1.25 4.276 5.372 0.762 0.791a

0.5 2 4.724 5.436 0.842 0.801a

2 1.25 5.369 2.183 0.957 0.466b

2 2 5.41 2.821 0.964 0.602b

a Nuiso = 6.79 (for Pe = 200).
b Nuiso = 4.684 (for Pe = 50).

The first task in any numerical work is to reproduce pub-
lished results accurately. Unfortunately, there are no data in
literature to verify the accuracy of the present computations.
The simulation of the case of spheres with constant temperature
can be viewed as a partial validation of the present computation.
Even for the case of constant sphere’s temperature, Aminzadeh
et al. [12] presented numerical values of the average Sherwood
number only for Pe = 0, while the results from [13,14] were
obtained in a different hydrodynamic regime.

The values of the average Nu number computed in this work
for Ξ−1 = 0, i.e. spheres with constant temperature, are given
in Table 2. Table 2 shows that the present values of the reduc-
tion factor (the reduction factor is the ratio between the average
Nu number for spheres in tandem and the average Nu number
for an isolated sphere) for the leading sphere are comparable
with those obtained in [13]. For the downstream sphere, the val-
ues of the reduction factor presented in [13] are smaller than
the present ones. Note that the comparison between the present
work and [13] can be only guiding, due to the different hydro-
dynamic regimes.

The case of two equal size spheres separated by sufficiently
large distance so that each sphere behaves like an isolated
one, may be used as accuracy test. For the present situation,
i.e. creeping flow and Pe = 100, the relative difference be-
tween Nu1 and the Nu value calculated for an isolated sphere,
Nuiso, becomes smaller than 1% for 2L/d � 21. The conver-
gence of Nu2 to Nuiso is slower. For example, Nu2/Nuiso =
0.9295 for 2L/d = 21, Nu2/Nuiso = 0.966 for 2L/d = 51 and
Nu2/Nuiso = 0.981 for 2L/d = 101. Note that even for the an-
alytical solution of Stimson and Jeffery, the correction factor
tends asymptotically to 1 (it is equal to 1 for an infinite distance
between spheres).

The time variation of the average Nu numbers is plotted in
Figs. 2 for different values of the heat capacity ratio. For each
Ξ value, the isolated (single) sphere results are also depicted.
The isolated sphere data were plotted as comparison criterion
for the asymptotic values. The case of the spheres with constant
temperatures is presented in Fig. 2(a). Fig. 3 shows the time
variation of the dimensionless temperature of the spheres for
Ξ = 100 (Fig. 3(a)) and Ξ = 1 (Fig. 3(b)). The connections
between Nui and Zi are obvious.

Figs. 2(b)–2(d) show that the average Nu numbers for
spheres with uniform temperature exhibit a different time evo-
lution in comparison with spheres with constant temperature.
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Fig. 2. Time evolution of the average Nu numbers for different spheres spacing
and different values of the volume heat capacity ratio; (a) spheres with constant
temperature; (b) Ξ = 100; (c) Ξ = 1; (d) Ξ = 0.01.

Fig. 3. Time variation of the dimensionless temperature of the spheres for dif-
ferent spheres spacing and different values of the volume heat capacity ratio;
(a) Ξ = 100; (b) Ξ = 1.

The main facts are (the results obtained for 0.1 � Ξ � 10 are
similar to those presented in Fig. 2(c)):

• The Nu number of the trailing sphere, Nu2, does not tend
asymptotically to a value different from Nu1. For τ → ∞,
both Nu numbers tend to the same value.

• The increase in 2L/d increases the asymptotic Nu values
only for Ξ = 100 and 2L/d in the range 1.25–2. In all the
other cases the increase in 2L/d from 1.25 to 3 decreases
the asymptotic Nu values.

• Negative values of Nu2 occur for Ξ = 1,2L/d = 3 and
Ξ = 0.1, 2L/d = 2 and 3.

• For Ξ = 0.1 and 0.01 and 2L/d = 1.25, the asymptotic Nu
values of the tandem spheres tend to a value greater than
the asymptotic Nu value of the isolated sphere.

For Ξ = 0.01 and 2L/d = 2;3, Nu1 and Nu2 separate when
Zi ≈ 10−4. The split in the time evolution of the two Nu num-
bers does not appear very clearly in Fig. 2(d) because we
stopped the time integration when Zi � 10−4.

To unravel the rules of the present interaction we plotted in
Fig. 4 (for 2L/d = 1.25) and Fig. 5 (for 2L/d = 2) the di-
mensionless temperature profiles in the interaction zone, i.e.
π/2 � ξ � π . The corresponding values of the local Nu num-
bers are presented in Figs. 6 and 7, respectively. Two cases are
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Fig. 4. Dimensionless temperature profiles in the interaction zone for 2L/d = 1.25; (a), (c), (e) spheres with constant temperature; (b), (d), (f) spheres with uniform
temperature.
presented in parallel: the spheres with constant temperature and
the spheres with uniform temperature for Ξ = 1.

The dimensionless temperature profiles in the interaction
zone at short times, when the conduction is the dominant mech-
anism of transport and there is no interaction, can be viewed in
Figs. 4(a), (b) and 5(a), (b). Figs. 4(c), (d) and 5(c), (d) show the
dimensionless temperature profiles when the two Nu numbers
separates. The behaviour of the systems after the Nu numbers
separation is depicted in Figs. 4(f) and 5(f). The steady state
dimensionless temperature profiles for the spheres with con-
stant temperature are plotted in Figs. 4(e) and 5(e). Note that
in Figs. 6 and 7, for the upstream sphere the front stagnation
point is located at ξ/π = 0 while the rear stagnation point at
ξ/π = 1. For the downstream sphere, the front stagnation point
is located at ξ/π = 1 while the rear stagnation point at ξ/π = 0.
In Fig. 7(b) the values of the local Nu number calculated for
τ = 0.0011 are not plotted in order to avoid a strong compres-
sion of the other data. The values of the local Nu numbers for
the spheres with uniform temperature at Ξ = 1,2L/d = 2 and
τ = 0.0011 are practically equal with those plotted in Fig. 7(a).

Let us consider two elements of fluid that meet on a stream-
line in the vicinity of the downstream sphere. One of these ele-



1018 G. Juncu / International Journal of Thermal Sciences 46 (2007) 1011–1022
Fig. 5. Dimensionless temperature profiles in the interaction zone for 2L/d = 2; (a), (c), (e) spheres with constant temperature; (b), (d), (f) spheres with uniform
temperature.
ments is coming from the upstream sphere with the dimension-
less temperature Z′. The other element has the dimensionless
temperature Z′′, due to the heat transfer from the downstream
sphere. The meeting of the two elements leads to a blocking
in the heat transfer rate for both spheres. In the early stages of
the interaction, we may assume that Z′ < Z′′. In this case both
spheres behave as a single object, with the same average heat
transfer rate. In time Z′ increases. When Z′ ≈ Z′′, the pressure
exerted by the upstream sphere increases considerably and the
heat transfer rate of the downstream sphere decreases. At this
moment, the time variation of the two Nu numbers separates.
Thus we may consider that two stages of interaction exist. Also,
from Fig. 2, an important observation that should be drawn is:
Nu1 does not vary significantly after the separation point; the
asymptotic values of Nu1 and Nu1 values at the separation mo-
ment are approximately the same.

The scenario described previously applies to both systems
presented in Figs. 4–7, i.e. spheres with constant tempera-
ture and spheres with uniform temperature. The values of the
Nu numbers during the interaction depend on the values of the
spheres temperature and temperature gradients in the vicinity of
the surfaces of the spheres. For the spheres with uniform tem-
perature, the values of the spheres temperature and temperature
gradients depend on volume heat capacity ratio. We can imag-
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Fig. 6. Local Nu numbers at different times for 2L/d = 1.25; (a) spheres with
constant temperature; (b) spheres with uniform temperature.

ine that Ξ acts as a barrier that controls the heat released in the
fluid phase. High values of Ξ means slow release of heat, slow
decrease in spheres temperature and high values of the temper-
ature gradients. Small values of Ξ means fast release of heat,
fast decrease in spheres temperature and small values for the
temperature gradients.

If the interaction takes place at relatively high values of
spheres temperature and temperature gradients (for spheres
with uniform temperature this condition is satisfied at high val-
ues of Ξ and/or small values of 2L/d) the behaviour of the
two systems is similar. Figs. 4(c), 4(d) and 6 show that for
2L/d = 1.25, in the moment of Nu numbers separation, the
values of the dimensionless temperature of the spheres and the
temperature gradients are comparable. The values of Nu1 in the
separation point are also comparable. At small gaps the interac-
tion occurs and develops in the transition regime. The first stage
of interaction does not take too long. Of course, the asymptotic
behaviour of the two systems is different. For spheres with uni-
form temperature at large times, in the convection regime, the
temperature of the spheres decreases significantly and thermal
wake occurs. The leading sphere exhibits a higher heat transfer
rate and its temperature decreases faster. When the difference
between the temperatures of the two spheres becomes signif-
icant, the impact of the leading sphere decreases and the heat
transfer rate of the trailing sphere increases.
Fig. 7. Local Nu numbers at different times for 2L/d = 2; (a) spheres with
constant temperature; (b) spheres with uniform temperature.

For 2L/d = 2, the interaction occurs in the convection
regime. The increase in the distance between spheres increases
the duration of the first stage of interaction. In the separation
point, the temperature of the spheres is small, the temperature
gradients are small and thermal wake is present on both spheres.
The capacity of the spheres to transfer heat to the environment
is reduced to the area of positive local Nu values. For nega-
tive local Nu values the spheres take heat from the medium.
It was expected that the presence of the thermal wake on the
leading sphere will decrease the interaction effects. The present
results show that the trailing sphere enlarges the thermal wake
of the leading sphere and the cooling of the fluid elements in
this wake is not strong enough to reduce the interaction effects
for the trailing sphere. The result is a global decrease in the heat
transfer rate of the system. In the separation point, the value of
Nu1 is smaller than that obtained at 2L/d = 1.25.

4.2. Spheres with equal diameters and different physical
properties

For Ξ1 �= Ξ2 and d1 = d2 = d , the time evolution of the
average Nu numbers is presented in Figs. 8. In Figs. 8 the
case Ξ1 = Ξ2 is plotted as comparison criterion for the leading
sphere. The results presented in Figs. 8 are not the only simu-
lations made with different values of the volume heat capacity
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Fig. 8. Time variation of the average Nu numbers for Ξ1 �= Ξ2;
(a) 2L/d = 1.25; (b) 2L/d = 2.

ratio. The same behaviour was observed for other (Ξ1,Ξ2) val-
ues.

Figs. 8 show that:

• for Ξ1 > Ξ2, the behaviour of the leading sphere during
the interaction does not change significantly in compari-
son with the case Ξ1 = Ξ2; for 2L/d = 2, the values of
Nu1 for Ξ1 = 1, Ξ2 = 0.1 and the values of Nu1 calculated
for Ξ1 = Ξ2 = 1 overlap; for 2L/d = 1.25, the asymp-
totic values of Nu1 are a bit higher; for both 2L/d values,
Nu2 exhibits smaller values than those computed for the
trailing spheres at Ξ1 = Ξ2 = 0.1; negative values of Nu2

occur for 2L/d = 1.25;
• for Ξ1 < Ξ2 the trailing sphere exhibits higher Nu number

values than the leading sphere; for each 2L/d value, the
asymptotic Nu2 values computed for Ξ1 = 1 and Ξ2 = 10
are higher than those calculated for Ξ1 = Ξ2 = 10; for
2L/d = 2 and Z1 � 10−3, the values of Nu1 are approxi-
mately equal with those computed for Ξ1 = Ξ2 = 1 (graph-
ically, these values overlap); the decrease in Nu1 takes place
at very small values of Z1, i.e. 10−4 � Z1 � 10−3; how-
ever, the relevance of this situation for practical situations
is questionable; for 2L/d = 1.25, Nu1 has smaller values
than those computed for Ξ1 = Ξ2 = 1.
For an isolated sphere, at a given Pe number, the parameter
that controls the heat transfer is the volume heat capacity ratio.
The results presented previously show that, for two spheres of
equal diameters in tandem, independent of the sphere’s position
(upstream or downstream), the volume heat capacity ratio has
the same determinant role.

We consider that the general principles of the interaction
mechanism presented in the previous section may be used in
order to explain the interaction between two spheres in tandem
with different Ξ values. Some assumptions as “both spheres
behaves as a single object, with the same average heat transfer
rate“ do not remain valid. The separation point is not present.
However, we may assume that:

• two stages of interaction exist;
• an analogue of the separation point can be defined;
• depending on the gap between spheres and the values of

the volume heat capacity ratio, the interaction takes place
at high or small values of the dimensionless temperature of
the spheres; also, interaction between spheres with highly
different dimensionless temperature can occur in this case.

From the data presented in this section, we think that the case
Ξ1 < Ξ2 deserves some supplementary discussions. Figs. 8
show that the time evolution of Nu2 has a minimum value. The
analogue of the separation point is placed before the minimum
value of Nu2. In the time interval,—analogue of the separation
point, minimum Nu2 value—the leading sphere exerts its max-
imum pressure on the trailing sphere. Favored by convection, it
tries to take the control of the process. This action fails due to
the fact that Ξ1 < Ξ2. If Ξ1 < Ξ2,Z1 decreases considerably
faster than Z2.

4.3. Spheres with different diameters

The cases considered of interest and presented in this sec-
tion are:

(i) Ξ1 = Ξ2 and d1/d2 = 2;
(ii) Ξ1 = Ξ2 and d1/d2 = 0.5;

(iii) Ξ1 < Ξ2 and d1/d2 = 2;

For cases (i) and (ii) we considered only one value for
2L1/d1, i.e. 2L1/d1 = 1.25. In these situations the increase in
2L1/d1 decreases the asymptotic Nu values and does not ex-
hibit any other particular effect. For the case (iii), two values of
2L1/d1 were considered: 2L1/d1 = 1.25 and 2L1/d1 = 2.

Fig. 9(a) shows that for Ξ1 = Ξ2 and d1/d2 = 2, the domi-
nant role of the leading sphere increases. In comparison with the
case Ξ1 = Ξ2 and d1 = d2, Nu1 has higher asymptotic values
while Nu2 has smaller asymptotic values. In case (ii), Nu2 ex-
hibits greater asymptotic values than Nu1 (see Fig. 9(b)). The
significant decrease in Nu1 at large times (Fig. 9(b)) is less im-
portant. It takes place at very small values of Z1.

Fig. 10 shows that:



G. Juncu / International Journal of Thermal Sciences 46 (2007) 1011–1022 1021
Fig. 9. Time variation of the average Nu numbers for spheres with different
diameters, Ξ1 = Ξ2 and 2L1/d1 = 1.25; (a) d1/d2 = 2; (b) d1/d2 = 0.5.

• at small gaps and high values of volume heat capacity ra-
tio (Ξ2 > Ξ1 � 1), as long as Z1 does not take very small
values, the convection effects counterbalance the influence
of Ξ ; the average Nu number of the leading sphere is
greater than the average Nu number of the trailing sphere;

• in the other situations, i.e. 2L1/d1 = 1.25 and Ξi � 1 and
the data presented in Fig. 10(b), the volume heat capacity
ratio makes the interaction rules; Nu2 has greater asymp-
totic values than Nu1.

We think that supplementary discussions are not necessary
in this section. The cases (i)–(iii) can be explained by the argu-
ments presented in the previous sections.

5. Conclusions

This work investigated numerically the thermal interaction
between two spheres with spatially uniform temperature in
tandem at moderate values of the Pe number. Stokes flow
around the spheres was assumed. Three cases were considered:
(a) equal spheres with identical physical properties; (b) equal
spheres with different physical properties and (c) spheres of dif-
ferent sizes with identical/different physical properties.

The present numerical results show that the classical rules
of tandem interaction, rules established for spheres with con-
stant temperature, are not obeyed by the spheres with spatially
Fig. 10. Time variation of the average Nu numbers for spheres with different
diameters, Ξ1 < Ξ2 and d1/d2 = 2; (a) 2L1/d1 = 1.25; (b) 2L1/d1 = 2.

uniform temperature but variable in time. For equal spheres
with identical physical properties the most relevant aspects are:
(a) in almost all situations the increase in the distance between
spheres does not increase the asymptotic Nu values; (b) Nu1 and
Nu2 tend to the same asymptotic value.

A mechanism that explains this behaviour is presented. The
key parameters that control the process are: the gap between
spheres and the volume heat capacity ratio. Small gaps and high
values of the volume heat capacity ratio lead to high asymptotic
Nu values. For spheres of different sizes and/or different materi-
als, the convection cannot counteract in any situation the effect
of geometry and/or the effect of volume heat capacity ratio. In
these situations, the trailing sphere may exhibit higher Nu val-
ues than the leading sphere.
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